博彩-玩博彩策略论坛_百家乐开户_全讯网hg8599.com(中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

百家乐官网账号变动原因| 真人百家乐官网游戏网| 牛牛现金棋牌| 涂山百家乐的玩法技巧和规则| 澳门博彩有限公司| 百家乐官网赌场| 大发888秘籍| 狮威百家乐官网娱乐城| 真龙国际娱乐| 网络百家乐大转轮| 破解百家乐官网打路单| 百家乐双倍派彩的娱乐城| 百家乐官网交流群号| 百家乐破解策略| 澳门百家乐官网赌技术| 百家乐国际娱乐场| 百家乐官网的桌子| 958棋牌游戏| 免费百家乐规律| 百家乐官网真人游戏网| 百家乐破解分| 杨公24山| 网上百家乐官网作弊不| 新全讯网网址g2vvv| 百家乐官网真人游戏| 廊坊市| 网上百家乐内| 百家乐官网baccarat| 白金会娱乐场怎么样| 百家乐桌布橡胶| 宝马会百家乐官网娱乐城| 皇室国际娱乐城| 君怡百家乐的玩法技巧和规则| 百家乐官网怎么玩请指教| 周口市| 小孟百家乐的玩法技巧和规则| 百家乐官网龙虎扑克牌游戏技巧打| 香港六合彩图库| A8百家乐的玩法技巧和规则| 现场百家乐百家乐| 麻将百家乐官网筹码|